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Analytic relations are obtained for determining the stability of thermoelectric devices and heat
exchangers with heat sources whose strength is a linear function of temperature.

The stationary temperature distribution of a heat exchanger whose walls contain semiconductor thermocouples
was investigated in [1]. It is required to determine whether the assumed stationary regime can always be established.
In fact, as will be shown below, the presence of a heat source of variable strength may lead to instability of the
system, i.e., to a monotonic rise in temperature.

In analyzing the stability of the system we make the same basic assumptions as in [1]. Moreover, it is assumed
that the wall of the heat exchanger is sufficiently thin and its heat capacity negligible as compared with that of the
heat transfer fluids.

We consider the case of countercurrent flow., Taking into account the variation of the enthalpy of the fluids in
time, we can write the system of equations for the temperatures of the fluids 7, , and the wall surfaces 7', , in the form

dt, | OT,

o9 Tog T
d. a7 ,
Y'a—;—‘a—g = Ny (7, — ) (1)
Bi, (1, — 7)) = v¥; —0,6v® — (1, — 1)),
Bi, (T2 — T) = vtz + 0,5v* — (1, —1,). (2)

Here, it is assumed thaty =1 (i.e., v; = v;}). Otherwise it is necessary to introduce the inverse velocity ratio y' =

= v,/v, into the first equation of system (1); this substitution does not affect the result of the stability analysis. The
relationship between v; and v, must be taken into account in order to calculate the dimensionless time with respect to
the maximum flow velocity, which makes it possible to use an operational method of solution.

We assume that at the initial instant the temperature of both fluids is constant along the length of the heat
exchanger and equal to the temperature at the point of admission, where it is kept constant in time:

T (Blo=0 = 7 O)le=0 = Ty,
8= &=0 )

T E)ls=o =T, (B)z=0 = Tao.

To solve the problem of the stability of the temperature regime we use the Laplace transform method, after first
eliminating the variables 7'; and 7', from the starting equations. With (3) taken into account, the transformed functions
T, 2(&,p) should satisfy Eqs. (4) and the boundary conditions (5):
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L Tw Tfe—1 = o (5)

where

F = Bi;Bi, + Bi; -+ Biy + v (Bi, — Bi;) — v*.

The solution of system (4) for 7; (£, p) can be written in the form

@& p)={A(Psh VY (p) — o +
+ B(p)sh 3 Y2 (p)—o¥(1—8)} exp [X (p) &l + R (p). (6)
Here, we have introduced the notation

1 1 . .
X (p)= '_'2—{P(1— Y)“l‘_F—[N1B12-‘N2 Bi; -+

-+ v (N Biy 4 Ny Biy) + v (N, — Ny |

1 1 . .
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4+ v (Ny Biy — N, Biy) — ¥* (N, -+ Ny)] };
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The functions 1{p), N(p), P(p) are entire and transcendental (the expressions have been omitted because of their
clumsiness).

The right side of Eq. (6) is a unique function of p satisfying the conditions of Jordan's lemma. This makes it
possible, in going over to the time region, to use a closed integration path in the plane p and employ the residue
theorem. The multiplier in the form exp[X(p)] determines the variation of 7,(§,.9 along the £-coordinate and also the
time lag, which depends on the {-coordinate, and does not affect the stability. The poles of expression (6) are the point
p =0, which determines the stationary distribution 7;(£), and the roots of the equation

Y(p)shs YE(p)—o® 4+ Y2 (p)—a?ch | Y2 (p)—a? = 0. (7)

Thus, the starting system is stable if the roots of Eq. (7) have a negative real part. An equation of type (7) is
fundamental to the solution of the stability problem not only for thermoelectric devices but also for heat exchangers
with internal energy sources of another nature, for example, in the case of heat release due to chemical reactions in
the fluid. In [2] an attempt was made to examine the stability of a heat exchanger with a chemical heat source
proportional to the temperature. However, the author only hints at the possibility of an unstable state without giving

the corresponding criteria.

Obviously, Eq. (7) has a root at the points Y¥p) = o2, which correspond to the two values of p:
pra = |—(NyBiy + NpBiy) — v (Ny Biy — Ny BL)) + v* (N + V) =
+2; NN, BB [(1+v) FI™ ®)
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The condition F > 0, which limits the current density, is always satisfied for actual thermoelectric cooling
devices. Then from (8) there follows the necessary condition of stability

VE(N; - No) —v (N Biy — N, Biy) — ( NiBh,— Ny BL) <0, 9)

We show that the other roots of Eg. (7) lie in the plane p to the left of the root p, and, hence, that inequality (9)
is also a sufficient condition of stability.

We introduce the notation (Yz(p) - 012)1/2 =a+Dbi, Y(p) = c + di, where a, b, ¢, d are arbitrary real numbers. It is
easy to show that for the roots of Eq. (7)

a® 4 0% 4 ¢ + d? — 2ac — 2bd

exp (4a) = a0+ d? - 2ac + 2bd 10)

Moreover, by definition
E -t =P (11)
cd = ab. (12)

For nonzero a, b, ¢ and d from relations (12) and (10, respectively, there follow the sign rules sign (ac) =
= sign(ac + bd) and ~ sign a = sign{ac + bd), whence ¢ < 0. At ReY(p) < 0 the corresponding roots of Eq. (7} lie in the
complex plane to the left of the root p;. When some of the quantities a, b, ¢ and d vanish, there are two possible cases
of satisfaction of Eqs. (10), (11) and (12): 1) a=0, b=0, d=0; 2) a=0, b= 0, d = 0. The first of these gives for
Eq. (7) the known pair of roots Py,y» and the second roots lying to the left of the root p;. This proves the sufficiency of
condition (9).

Inequality (9) is satisfied on the interval 0 < v < 1. It is convenient to write the maximum current density VO
permissible for a stable system in terms of the water equivalents W, , of the fluids and the parameters g; = (B11)
,82 (Blz) 1

1

Vo = 1By Wit B Wol ™ (Wo— W, + [(Wo—W,)° +

1
+ AP Wi+ B W) VW —) Wy %) (13)

The value ¥ coincides with the current defining the limit of occurence of a periodic stationary temperature
distribution along the length £ (Eq. (13) of [1]). Actually, owing to the instability of the system such a stationary
temperature distribution cannot develop.

When W, = W, v, = 0; therefore, in the presence of a symmetrical flow over the wall of the heat exchanger the
temperature regime is always unstable. An example of an unstable system with symmetrical flows is the regenerative
heat exchanger considered in [3], which, as follows from the above reasoning, cannot operate as a cooling device.

The region of stability for a parallel flow can be similarly analyzed. It is found that the parallel-flow heat
exchanger is a stable system at any values of the parameters.

The transient regime in counterflow heat exchangers is characterized by temperature oscillations; in the
unstable regime the amplitude of the oscillations increases with time. Under actual conditions, an indefinite increase
in temperature is, of course, prevented by the finite power of the current source and heat losses to the surrounding
medium.

NOTATION

7= 2T is the dimensionless temperature; T is the temperature in the fluid flow; T' is the temperature of the
junctions; T, is the inlet temperature of the heat-transfer agent: z = a¥/pr; a, A, p are the reduced thermal emf,
thermal conductivity, and resistivity; S, d, and ] are the area, thickness and length of module; £ = x/I is the
dimensionless coordinate; x is the coordinate along the flow; v = (¢d/A)j is the dimensionless current; j is the current
density; Bi;, = 1/[31,2 =2, d/A is the Biot number; « is the heat-transfer coefficient with allowance for the radiator
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per unit area of the module; N, , = Sa;,/W, ,is the dimensionless area; W is the water equivalent of the flow; ¢ = tv,/d
is the dimensionless time; t is the time; v, ,2 are the flow velocities; y=1/y'= V1/V2. The subscripts 1 and 2 relate to
the cooled and heated heat-transfer agents, respectively.
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